Ma `lumot

16.16: Qishloq xo'jaligi biotexnologiyasi - biologiya


Qishloq xo'jaligidagi biotexnologiya kasalliklarga, zararkunandalarga va ekologik stressga chidamliligini oshirib, hosilni ham, sifatini ham yaxshilaydi.

Transgen hayvonlar

Garchi tibbiyotda ishlatiladigan bir nechta rekombinant oqsillar bakteriyalarda muvaffaqiyatli ishlab chiqarilsa -da, ba'zi oqsillar to'g'ri ishlov berish uchun hayvonlarning eukaryotik xostini talab qiladi. Shu sababli, kerakli genlar klonlanadi va qo'y, echki, tovuq va sichqon kabi hayvonlarda ifodalanadi. Rekombinant DNKni ifodalash uchun o'zgartirilgan hayvonlarga transgen hayvonlar deyiladi. Bir nechta odam oqsillari qo'y va echkilarning sutida, ba'zilari esa tovuq tuxumlarida ifodalanadi. Sichqonlar rekombinant genlar va mutatsiyalar ta'sirini ifodalash va o'rganish uchun keng ishlatilgan.

Transgen o'simliklar

O'simliklarning DNKini manipulyatsiya qilish (ya'ni, GMO yaratish) kasalliklarga chidamlilik, gerbitsid va pestitsidlarga qarshilik, ozuqaviy qiymati va saqlash muddatini yaxshilash kabi kerakli xususiyatlarni yaratishga yordam berdi (1-rasm). O'simliklar insoniyat uchun eng muhim oziq -ovqat manbai hisoblanadi. Fermerlar zamonaviy biotexnologiya amaliyoti paydo bo'lishidan ancha oldin, o'ziga xos xususiyatlarga ega bo'lgan o'simlik navlarini tanlash usullarini ishlab chiqdilar.

Boshqa turlardan rekombinant DNK olgan o'simliklar transgen o'simliklar deyiladi. Tabiiy bo'lmaganligi sababli, transgenli o'simliklar va boshqa GMOlar davlat organlari tomonidan yaqindan kuzatib borilib, ularning inson iste'moli uchun yaroqliligini va boshqa o'simlik va hayvonot hayotiga xavf tug'dirmasligini ta'minlaydi. Chet el genlari atrofdagi boshqa turlarga tarqalishi mumkinligi sababli, ekologik barqarorlikni ta'minlash uchun keng ko'lamli sinovlar talab qilinadi. Misr, kartoshka va pomidor kabi asosiy mahsulotlar genetik muhandislik qilingan birinchi o'simlik o'simliklari edi.

Foydalanish orqali o'simliklarning o'zgarishi Agrofakteriyalar tumefaciens

Gen uzatilishi tabiiy ravishda mikrob populyatsiyasidagi turlar o'rtasida sodir bo'ladi. Saraton kabi inson kasalliklarini keltirib chiqaradigan ko'plab viruslar DNKini inson genomiga kiritish orqali harakat qiladi. O'simliklarda, bakteriyalar keltirib chiqaradigan o'smalar Agrofakteriyalar tumefaciens DNKni bakteriyadan o'simlikka o'tkazish natijasida paydo bo'ladi. O'smalar o'simliklarni o'ldirmasa -da, ular o'simliklarni qotib qoladi va qattiq ekologik sharoitlarga moyil qiladi. Yong'oq, uzum, yong'oq daraxtlari va lavlagi kabi ko'plab o'simliklar ta'sir ko'rsatadi A. tumefaciens. O'simlik hujayralariga DNKni sun'iy kiritish hayvon hujayralariga qaraganda qiyinroq, chunki o'simlik hujayrali devor qalin.

Tadqiqotchilar DNKning tabiiy uzatilishini qo'lladilar Agrobakteriyalar O'simliklar xo'jayiniga DNK bo'laklarini tanlab olish. Tabiatda kasallik keltirib chiqaradi A. tumefaciens Ti plazmidlari (o'simtani chaqiruvchi plazmidlar) deb ataladigan plazmidlar to'plamiga ega bo'lib, ular o'simliklarda o'smalar ishlab chiqarish uchun genlarni o'z ichiga oladi. Ti plazmididan olingan DNK infektsiyalangan o'simlik hujayrasi genomiga qo'shiladi. Tadqiqotchilar Ti plazmidlarini manipulyatsiya qilib, o'simta keltirib chiqaradigan genlarni olib tashlashadi va o'simlik genomiga o'tkazish uchun kerakli DNK bo'lagini kiritishadi. Ti plazmidlari tanlovga yordam berish uchun antibiotiklarga chidamli genlarni olib yuradi va ularni ko'paytirish mumkin E. coli hujayralar ham.

Organik insektitsid Bacillus thuringiensis

Bacillus thuringiensis (Bt) - o'simliklarga ta'sir qiladigan ko'plab hasharotlar turlari uchun toksik bo'lgan sporulyatsiya paytida oqsil kristallarini ishlab chiqaradigan bakteriya. Toksin faol bo'lishi uchun Bt toksinini hasharotlar yutishi kerak. Bt toksinini iste'mol qilgan hasharotlar bir necha soat ichida o'simliklar bilan oziqlanishni to'xtatadilar. Hasharotlarning ichaklarida toksin faollashgandan so'ng, o'lim bir necha kun ichida sodir bo'ladi. Zamonaviy biotexnologiya o'simliklarga hasharotlarga qarshi ta'sir qiluvchi o'z kristalli Bt toksinini kodlash imkonini berdi. Kristalli toksin genlari Bt dan klonlangan va o'simliklarga kiritilgan. Bt toksini atrof-muhit uchun xavfsiz, odamlar va boshqa sutemizuvchilar uchun toksik emasligi aniqlandi va organik dehqonlar tomonidan tabiiy insektitsid sifatida foydalanish uchun tasdiqlangan.

Pomidor Flavr Savr

Birinchi GM ekinlari bozorda 1994 yilda ishlab chiqarilgan Flavr Savr pomidorini oldi. Antisense RNK texnologiyasi zamburug'li infektsiyalar tufayli yumshatish va chirish jarayonini sekinlashtirish uchun ishlatilgan, bu esa GM pomidorining saqlash muddatini ko'paytirishga olib keldi. Qo'shimcha genetik modifikatsiya bu pomidorning ta'mini yaxshilagan. Hosilni saqlash va etkazib berish muammolari tufayli Flavr Savr pomidorlari bozorda muvaffaqiyatli qolmadi. Biroq, o'sha paytdan boshlab ko'plab o'simlik o'simliklari ishlab chiqilgan va sotish va iste'mol uchun tasdiqlangan. Makkajo'xori, soya va paxta, ayniqsa, AQSh fermerlari tomonidan qabul qilingan.


An'anaviy biotexnologiya va gen muhandisligi o'rtasidagi farq

An'anaviy naslchilik yoki An'anaviy biotexnologiya nasllarni nazoratsiz kesib o'tishni o'z ichiga oladi. Xuddi shunday, selektsioner qaysi ikkita zotni kesib o'tishni aniq boshqarishi mumkin edi, lekin genetik darajadagi voqealar uning nazorati ostida emas.

Barcha xususiyatlar aralash va tasodifiy avlodda tugaydi, demakki, kerakli xususiyat bilan bir nechta kiruvchi xususiyatlar bo'lishi mumkin. O'simliklar hosildorligi yuqori bo'lishi mumkin, lekin ayni paytda zararkunandalarga chidamliligi juda past bo'lishi o'limga olib kelishi mumkin.

Bu usullar ishlash uchun ancha vaqt va kuch sarflaydi. Buning katta qismi kerakli xususiyatlarni olishda ishlatiladi kiruvchi xususiyatlarni olib tashlash genlardan.

Masalan, tasodifiy aralashtirish orqali genga kiruvchi kiruvchi xususiyatlarni olib tashlash uchun kamida 3 oylik ko'p o'sish davrida o'simlikni qayta-qayta kesib o'tish kerak. Bu ko'p hollarda iqtisodiy jihatdan foydali emas tavakkal qila olmaydigan kichik oilaviy fermer xo'jaliklari uchun.

Endi biz muhokama qilishni davom ettiramiz gen injeneriyasi.

Hozirgi zamonaviy ilmiy tadqiqotlar bizga DNKning kerakli belgi genini kodlaydigan qismini ajratish va uni yangi transgen organizm DNKiga o'tkazish imkonini berdi. Xuddi shu tarzda, siz organizmning genlar ketma -ketligidan istalmagan xususiyatni olib tashlashingiz mumkin.

Biz ’re darajasida genlarni tahrirlash Photoshop -da tasvirni tahrir qilish kabi oson!

Rekombinant dna texnologiyasidan foydalanish an'anaviy naslchilik texnikasiga qaraganda o'zgarishlarga tezroq erishishga imkon beradi.

Bunga qo'shimcha ravishda, siz xohlagan vaqtingizda, xohlagan fazilatingizni sinab ko'rishingiz mumkin. Siz faqat ko'chatlarni issiqxona laganda ichiga ekishingiz kerak.

Ko'pincha siz genetik muhandislik ekinlari yoki gmos haqida o'qiyotganingizda, genetik modifikatsiyalangan qishloq xo'jaligi mahsulotlariga qanday qo'l tekkizishingiz mumkin, degan savol tug'iladi. Shunday qilib … ular bizning atrofimizda bormi?

Ha! Tadqiqotlar shuni ko'rsatadiki, supermarketlarning oziq -ovqat bo'limida, hech bo'lmaganda Oziq-ovqat mahsulotlarining 60-70% to'liq yoki qisman yangi texnologiyalar yordamida ishlab chiqarilgan ekinlardan olinishi mumkin.

Dehqonlar yangi usullarga o'tishni shunchalik yaxshi qabul qildilarki, AQShda yetishtiriladigan makkajo'xorining uchdan bir qismi, shuningdek, soya loviya va paxtasining 3/4 qismi genetik modifikatsiyalangan ekinlar hisobidan olinadi.

USDA tomonidan tijorat maqsadlarida sotish uchun ruxsat berilgan transgenik ekinlar:

  1. makkajo'xori
  2. kartoshka
  3. pomidor
  4. paxta
  5. soya
  6. kolza
  7. Papaya
  8. lavlagi
  9. skoush
  10. guruch
  11. zig'ir
  12. hindibo

Glifosatga chidamli paxta, ‘Bt ’ makkajo'xori va soya mahsulotlari eng ko'p ishlab chiqariladi. Paxta va makkajo'xori bilan sodir bo'lgan narsa shundaki, ularning DNKiga tabiiy ravishda hasharotlarni yo'q qiladigan organizm Bacillus Thuringiensisning DNKi kiritildi.

Bu organizm (bacillus thuringiensis bt) o'simlikni tishlab yuboradigan o'lik zararkunandalarning ko'pini, xususan, an'anaviy paxta va makkajo'xori ekinlari uchun xavfli bo'lganlarni o'ldiradi, aks holda hasharotlarni o'simlik uchun yaxshi saqlay olmaydi.

Bu dehqonlar uchun zararkunandalarga qarshi kurashda inqilob qildi.

Bt Cotton – Biotexnologiyaning qishloq xo'jaligida qo'llanilishi.

Glifosat - bu har qanday o'simlikni o'ldiradigan gerbitsid, ammo soya DNKida glifosat qarshilik genining mavjudligi fermerlarga ekinlarga hech qanday zarar bermasdan ochiq erga glifosat sepish imkonini beradi.

Bt makkajo'xori, paxta va glifosatga chidamli, ba'zida ‘ biotexnik ekinlar ’ yoki ‘gm ekinlar ’ deb ataladi.

Siz topgan yoki o'qigan har bir mahsulotning o'ziga xos xavfi va foydasi bor. Gen muhandisligi haqida gapirganda, bugungi kungacha ilmiy jihatdan isbotlanmagan juda ko'p foyda va xavflar bor.

Yana bir narsa aytishimdan oldin, biotexnologiya va qishloq xo'jaligini aralashtirish biz uchun qanchalik foydali ekanligi haqida to'xtalib o'tsam.


Garchi tibbiyotda ishlatiladigan bir nechta rekombinant oqsillar bakteriyalarda muvaffaqiyatli ishlab chiqarilsa -da, ba'zi oqsillar to'g'ri ishlov berish uchun hayvonlarning eukaryotik xostini talab qiladi. Shu sababli, kerakli genlar klonlanadi va qo'y, echki, tovuq va sichqon kabi hayvonlarda ifodalanadi. Rekombinant DNKni ifodalash uchun o'zgartirilgan hayvonlarga transgen hayvonlar deyiladi. Bir nechta odam oqsillari transgen qo'y va echkilar sutida, ba'zilari esa tovuq tuxumlarida ifodalanadi. Sichqonlar rekombinant genlar va mutatsiyalar ta'sirini ifodalash va o'rganish uchun keng ishlatilgan.

Shakl 1. Makkajo'xori, qishloq xo'jaligining asosiy ekinlari, turli sohalar uchun mahsulotlar yaratish uchun ishlatiladi, ko'pincha o'simlik biotexnologiyasi orqali o'zgartiriladi. (kredit: Keyt Veller, USDA)

O'simliklarning DNKini manipulyatsiya qilish (ya'ni, GMO yaratish) kasalliklarga chidamlilik, gerbitsid va pestitsidlarga qarshilik, ozuqaviy qiymati va saqlash muddatini yaxshilash kabi kerakli xususiyatlarni yaratishga yordam berdi (1-rasm). O'simliklar insoniyat uchun eng muhim oziq -ovqat manbai hisoblanadi. Fermerlar zamonaviy biotexnologiya amaliyoti paydo bo'lishidan ancha oldin, kerakli xususiyatlarga ega bo'lgan o'simlik navlarini tanlash usullarini ishlab chiqishgan.

Boshqa turlardan rekombinant DNK olgan o'simliklar transgen o'simliklar deyiladi. Tabiiy bo'lmaganligi sababli, transgenli o'simliklar va boshqa GMOlar davlat organlari tomonidan yaqindan kuzatib borilib, ularning inson iste'moli uchun yaroqliligini va boshqa o'simlik va hayvonlar hayotiga xavf tug'dirmasligini ta'minlaydi. Chet el genlari atrofdagi boshqa turlarga tarqalishi mumkinligi sababli, ekologik barqarorlikni ta'minlash uchun keng ko'lamli sinovlar talab qilinadi. Misr, kartoshka va pomidor kabi asosiy mahsulotlar genetik muhandislik qilingan birinchi o'simlik o'simliklari edi.

Foydalanish orqali o'simliklarning o'zgarishi Agrofakteriyalar tumefaciens

Gen uzatilishi tabiiy ravishda mikrob populyatsiyasidagi turlar o'rtasida sodir bo'ladi. Saraton kabi inson kasalliklarini keltirib chiqaradigan ko'plab viruslar DNKini inson genomiga kiritish orqali harakat qiladi. O'simliklarda bakteriyalar keltirib chiqaradigan o'smalar Agrofakteriyalar tumefaciens DNKni bakteriyadan o'simlikka o'tkazish natijasida paydo bo'ladi. O'smalar o'simliklarni o'ldirmasa -da, ular o'simliklarni qotib qoladi va qattiq ekologik sharoitlarga moyil qiladi. Yong'oq, uzum, yong'oq daraxtlari va lavlagi kabi ko'plab o'simliklar ta'sir ko'rsatadi A. tumefaciens. O'simlik hujayralariga DNKni sun'iy kiritish hayvon hujayralariga qaraganda ancha qiyin, chunki o'simlik hujayralari qalin.

Tadqiqotchilar DNKning tabiiy uzatilishini qo'lladilar Agrobakteriyalar O'simliklar xo'jayiniga DNK bo'laklarini tanlab olish. Tabiatda kasallik keltirib chiqaradi A. tumefaciens Ti plazmidlari (o'simtani chaqiruvchi plazmidlar) deb ataladigan plazmidlar to'plamiga ega bo'lib, ular o'simliklarda o'smalar ishlab chiqarish uchun genlarni o'z ichiga oladi. Ti plazmididan olingan DNK infektsiyalangan o'simlik hujayrasi genomiga birlashadi. Tadqiqotchilar Ti plazmidlarini manipulyatsiya qilib, o'simta keltirib chiqaradigan genlarni olib tashlashadi va o'simlik genomiga o'tkazish uchun kerakli DNK bo'lagini kiritishadi. Ti plazmidlari tanlovga yordam berish uchun antibiotiklarga chidamli genlarni olib yuradi va ularni ko'paytirish mumkin E. coli hujayralar ham.


Biotexnologiya sohasi

Katta martaba bor biotexnologiya sohasi Siz ijodiy samarali tibbiy asbob -uskunalar va texnologiyalar, sog'liqni saqlash sohasidagi innovatsiyalar, farmatsevtika tadqiqotlari va boshqalar ustida ishlashingiz mumkin. Biotexnologiyada muvaffaqiyatli martaba qurib, siz oziq -ovqat barqarorligi, qishloq xo'jaligi, tibbiyot fanlari va sog'liqni saqlash sohasidagi tadqiqotlarning boshida ishlaysiz. Bu erda siz biotexnologiyada istiqbolli martaba bilan shug'ullanishingiz mumkin bo'lgan eng mashhur sohalar:

  • Chiqindilarni boshqarish
  • Dori va farmatsevtika tadqiqotlarih
  • Bio-qayta ishlash sanoati
  • Qishloq xo'jaligi fanlari
  • Atrof -muhit nazorati
  • Davlat tomonidan moliyalashtiriladigan laboratoriyalar
  • Energiyani boshqarish
  • Sut mahsulotlari texnologiyasi

Qishloq xo'jaligi biotexnologiyasi nima?

Qishloq xo'jaligi biotexnologiyasi - bu o'simlik va hayvonlarni yaxshilash uchun ilmiy usullardan foydalanish. Ilmiy texnikadan foydalanib, olimlar qishloq xo'jaligi hosildorligini yaxshilashlari va oshirishlari mumkin. Garchi odatiy chatishtirish cheklangan natijalarga olib kelsa-da, biotexnologiya uni bir qadam oldinga suradi. Aslini olib qaraganda, biotexnologiya olimlarga DNKdagi ba'zi xususiyatlarni aniqlab, ularni o'simlik va hayvonlarga qo'llash imkonini beradi. Bu texnologiya olimlarga oddiy naslchilikda imkonsiz bo'lgan yaxshilanishlarni amalga oshirish imkonini beradi. Shunday qilib, qishloq xo'jaligida iste'molchilarni kuzatib boradigan yaxshilanishlarni yaratish.


Qishloq xo'jaligida biotexnologiyaning qo'llanilishi

Shumbeyi Muzondo muxbiri
Biotexnologiya-bu biologiyaning eng tez rivojlanayotgan fanidir, bu esa toza va yashil muhitda oziq-ovqat va yoqilg'iga bo'lgan talabning ortishi bilan bog'liq.

Umuman olganda, biotexnologiya foydali mahsulotlar va xizmatlarni ishlab chiqarish uchun tirik tizimlardan foydalanadigan ko'plab texnologiyalarni o'z ichiga oladi.

Biotexnologiyani qishloq xo'jaligi tizimiga kiritish cheklangan resurslardan yaxshiroq foydalanish, qishloq xo'jaligi hosildorligini oshirish va pestitsidlar va kimyoviy o'g'itlardan foydalanishning zararli ta'sirini kamaytirish uchun juda muhimdir.

Qishloq xo'jaligi biotexnologiyasi - bu qishloq xo'jaligi fani sohasi bo'lib, u hujayra va molekulyar biologiya vositalaridan foydalanib, ekinlar va hayvonlarning genetik tuzilishini va agrotexnik boshqaruvini yaxshilaydi.

Bu sohada olimlar va tadqiqotchilar tomonidan qo'llaniladigan ko'plab biotexnologiya usullari mavjud bo'lib, ular gen muhandisligi, marker yordamida tanlash, gibridizatsiya, o'simlik to'qimalari madaniyati, bio o'g'itlash texnologiyasi, sun'iy urug'lantirish texnologiyasi, o'simlik va chorva kasalliklari diagnostikasi hamda vaktsina ishlab chiqarishni o'z ichiga oladi.

Ushbu biotexnologiya vositalarini Zimbabveda qo'llash qishloqda yashaydigan va asosan qishloq xo'jaligiga bog'liq 7,6 millionga yaqin odamning turmush darajasini yaxshilash imkoniyatiga ega.

Pomidor o'simlikida biotexnologiya qo'llaniladi

Rekombinant DNK texnologiyasi

Bu texnologiya, unda o'simlik yoki hayvon o'ziga xos xususiyatlarini yaxshilash yoki yangi funktsiyalarni bajarishi uchun boshqa organizmdan genetik material (DNK) olishi mumkin.

Genetik modifikatsiyalangan organizmlar (GDO) - zararkunandalarga, kasalliklarga yoki ekologik sharoitlarga qarshilik ko'rsatish uchun genetik jihatdan o'zgartirilgan qishloq xo'jalik ekinlarini o'z ichiga oladi. Masalan, Bt paxta - bu genetik modifikatsiyalangan paxta, u Bacillus thuriengiensis bakteriyasidan olingan genni o'z ichiga oladi. Bt paxtasi paxtaning asosiy zararkunandasi bo'lgan amerikalik chuvalchang hujumiga chidamli.

Boshqa usullar o'simlikning kimyoviy ishlov berishga chidamliligini (masalan, gerbitsidlarga qarshilik) olib kelishi mumkin.

Shu bilan bir qatorda ma'lum bir ozuqa moddalari yoki farmatsevtika mahsulotlarini ishlab chiqarish ma'lum bir GMOda amalga oshirilishi mumkin.

Ko'p afzalliklarga ega bo'lishiga qaramay, GMOni ishlab chiqish bir qator to'siqlarga duch keladi, shu jumladan bitta navni yaratishning yuqori narxi, me'yoriy hujjatlarni tasdiqlash uchun uzoq muddat (odatda kamida 10 yil) va keng jamoatchilik qarshiligi.

Zimbabve hali hech qanday GMO tijoratlashtirmagan.

Gibridizatsiya har xil zot, nav, tur yoki avloddagi ikkita organizmning sifatini jinsiy ko'payish orqali birlashtirib, uning hosilini oshiradigan yangi belgi beradi. Zimbabveda gibrid makkajo'xori urug'i, paxta urug'i, bug'doy, soya loviya, arpa, jo'xori va er yong'oq urug'ini ishlab chiqaradigan va tarqatadigan bir qancha kompaniyalar bor.

Bio o'g'itlar-foydali mikroorganizmlarning jonli formulalari. Ular 100 % organik bo'lib, urug ', ildiz yoki tuproqqa qo'llaniladi.

Bio o'g'itlar kimyoviy o'g'itlardan ortiqcha foydalanishni kamaytirishi, tuproqni organik ozuqa moddalarini ishlab chiqaradigan mikroorganizmlar bilan boyitishi, kasalliklarga qarshi kurashishi, shuningdek, dehqonlarga arzonroq o'g'it manbai berishi mumkin.

Marker yordamida selektsiya/ yoki molekulyar naslchilik

Marker yordamida tanlov-zamonaviy o'simlik biotexnologiya kompaniyalari orasida eng ilg'or texnologiya. O'simlik selektsionerlari ushbu texnikadan foydalanib, yangi tijorat duragaylarini yaratish jarayonini tezlashtirish uchun kerakli xususiyatlarni topib, yig'ib olishlari mumkin.

GDOlardan farqli o'laroq, marker yordamida tanlangan yangi ekin navlari, asosan, o'simlikning tabiiy genetik chegaralari o'tmaganligi sababli, qonuniy sinovlardan va jamoatchilik qarshiligidan qutulib qoladi.

Zimbabvedagi ba'zi urug 'uylari va ilmiy -tadqiqot institutlari iqlim o'zgarishining salbiy ta'siriga dosh bera oladigan makkajo'xori, tariq, jo'xori va dukkakli ekinlarning takomillashtirilgan navlarini ishlab chiqish uchun ushbu texnikadan foydalanganlar.

Zimbabveda kassa, kartoshka va shirin kartoshka etishtiruvchilar uchun past rentabellikga ega bo'lgan innovatsion yechim to'qimalarni etishtirish texnologiyasi. To'qimachilik madaniyati, odatda mikro-ko'payish deb ataladi, kultivator sun'iy muhitda o'simlikning tashqarisida to'qima yoki hujayralarni o'stiradigan ko'paytirish vositasidir.

U yuqori mahsuldor navlardan millionlab kasalliksiz ko'chatlar ishlab chiqarishi mumkin. An'anaviy pishgan o'simliklardan yoki kasal urug'lardan kesilgan bo'laklarni ekish o'rniga, dehqonlar to'qima etishtirish texnologiyasi yordamida ishlab chiqariladigan yuqori mahsuldor navlardan virussiz va kuchli o'simlik ko'chatlarini ekishlari mumkin.

Xarare Texnologiya Instituti (XIT) - hozirgi vaqtda tijorat maqsadlarida istiridye qo'ziqorinlarini ishlab chiqarish uchun to'qimalarni o'stirish usullarini qo'llagan institutlardan biri. HIT shuningdek, qo'ziqorin tayyorlash kurslarini taklif qilib, o'z xizmatlarini kengaytirdi.

Sun'iy urug'lantirish texnologiyasi

So'nggi o'n yilliklarda naslchilik texnologiyasi tez sur'atlar bilan o'sib bordi va sun'iy urug'lantirish ko'plab sut va go'sht fermalari tomonidan sigir va cho'chqa kabi qishloq xo'jalik hayvonlarining keyingi avlodini ko'paytirish uchun qabul qilingan texnologiyalardan biriga aylandi.

Sun'iy urug'lantirish - bu erkak hayvondan sperma hujayralarini yig'ish va ayolning reproduktiv tizimiga qo'lda joylashtirish jarayoni. Bu mollarning tana go'shti sifatini oshirish va vaznini oshirish uchun eng yaxshi buqalardan olingan urug'lardan foydalanish imkoniyatini beradi.

Mahalliy fermerlar yaxshi zotdor yoki bilimli inspektor yordamida eksportni yaxshilash, oilalar uchun boylik yaratish va ovqatlanishni yaxshilash uchun ushbu asosiy vositadan foydalanishlari mumkin.

Kasalliklar diagnostikasi va vaktsinalar

Zimbabve fermerlari asosan sigir, echki, tovuq va qo'y boqishadi. Bu dehqonlar uchun hosildorlikni kamaytiradigan ko'plab kasalliklarning oldini olish, gigiena, boshqaruv va ovqatlanish qoidalariga rioya qilish orqali amalga oshiriladi.

Kasalliklarni tashxislash va emlash uchun biotexnologiya usullari kasalliklarni samarali boshqarish uchun asosiy vositadir.

Bu usullar serologik usullar bilan solishtirganda (har xil kasalliklarni aniqlaydigan qon tekshiruvi) aniqlik, aniqlik va mehnat talablarining kamayishi bilan amalga oshiriladi.

Ba'zi mahalliy tadqiqot institutlari vaktsinalarni ishlab chiqishlari va kasalliklarni samarali boshqarish uchun molekulyar diagnostika xizmatlarini taklif qilishlari mumkin, bu esa keyinchalik sog'lom chorvachilikni anglatadi.

Bu taqdimot qishloq xo'jaligi biotexnologiyasining bizning jamiyatimizga qo'shgan hissasining bir ko'rinishi.

Ko'plab mahsulotlar va xizmatlar taklif qilinmoqda, ba'zilari hali ishlab chiqilmayapti.

Qo'shimcha ma'lumot olish uchun, iltimos, muallif bilan bog'laning [email  protected] yoki [email  protected]


Biotexnologiyada karerani qanday boshlash kerak?

Biotexnologning karerasini davom ettirish uchun siz bilim olish, malaka va kasbiy tayyorgarlik bilan tanishishingiz kerak. Shunday qilib, biz quyida biotexnolog bo'lish bo'yicha bosqichma-bosqich qo'llanmani umumlashtirdik:

Biotexnologiyada BTech yoki BSc kabi bakalavr darajasiga intiling.
Biotexnologiya sohasida martaba orttirishning birinchi qadami - bu sohaning asosiy tushunchasini olish, biotexnologiya bo'yicha bakalavr darajasiga ega bo'lish va molekulyar biotexnologiya, kimyoviy biotexnologiya, biotexnologiya muhandisligi kabi fanlararo mutaxassisliklar. Bundan tashqari, siz ushbu fanning asosiy tushunchalariga erishish uchun biologiya, kimyo, biomedikal muhandislik va boshqalar kabi tegishli sohalarda bakalavr darajasini olishingiz mumkin.

O'qish va amaliyot imkoniyatlarini o'rganing
Biotexnologiya bo'yicha bakalavr dasturini o'qiyotganda, tadqiqot institutlarida yoki tibbiyot fanlari yoki texnologiyalari sohasida o'qish va amaliyot o'tash imkoniyatlarini o'rganish ham muhim ahamiyatga ega. O'qish va amaliyot, shuningdek, rezyumeni qo'shadi va bu sohadagi professional tajribangizni namoyish etadi, bu sizga biotexnologning lavozimiga yaxshiroq moslashishga yordam beradi.

Magistr va#8217 darajali mutaxassisliklarga ega bo'ling
Bitirgandan so'ng aspirantura malakasini olish juda muhim va siz "Biotexnologiya" yoki u bilan bog'liq ixtisosliklar bo'yicha amaliy biotexnologiya, tibbiyot biotexnologiyasi, sanoat va ekologik biotexnologiya bo'yicha magistrlik darajasini olishingiz mumkin, chunki bu sizga kerakli tadqiqot imkoniyatlari va ko'nikmalarini beradi. Biotexnologiyada muvaffaqiyatli martaba qozonish.

Biotexnologiyada mos ishlarni o'rganing
Biotexnologiya bo'yicha magistrlik darajasini tugatganingizdan so'ng, siz biotexnolog sifatida ishga joylashish imkoniyatlarini o'rganishga tayyor bo'lasiz. Bu erda biotexnologiya bitiruvchilari uchun asosiy ish joylari:

  • Bio-qayta ishlash sanoati
  • Kimyo sanoati
  • Tadqiqot institutlari va universitetlar
  • Dori va farmatsevtika tadqiqotlari

Agar siz a ga intilayotgan bo'lsangiz tadqiqot sohasidagi martaba yoki akademiya, keyin siz ham doktorlik darajasini olishingiz mumkin Biotexnologiya fanlari doktori .


Biotexnologiyaga misollar

Biotexnologiya ekologik xavflar, energiya manbalaridan ortiqcha foydalanish, tarqalish kabi muammolarga qarshi kurashish uchun mahsulotlar va texnologiyalarni muvaffaqiyatli ishlab chiqmoqda yuqumli kasalliklar, ochlik, ishlab chiqarishdagi qiyinchiliklar va boshqalar.

Guruch tayoqchalariga o'tirgandan so'ng, tabiiy resurslardan dori -darmonlarni tahlil qilib, kashf etgach, biotexnologiya butun dunyo bo'ylab zararli va o'lik kasalliklarning ehtimolini o'zgartirdi. Bu kasallik yoki infektsiyani erta bosqichda aniqlash uchun yuqori darajada jihozlangan ko'plab asboblar bilan dunyoga foyda keltirdi.

Biotexnologiyaning jamiyatga qo'shgan hissasi juda katta. Yoqilg'i bugungi kunda omon qolish uchun zarurdir.

Qimmatbaho ishlab chiqarish korxonalarini yaratish uchun fermentatsiya va xamirturush kabi biokatalizatorlarni fermentatsiya va ekspluatatsiya qilish kabi jarayonlarni qo'llagan holda, bu fan sohasi yoqilg'i va boshqa biologik alternativalarni ishlab chiqarishni tezlashtirdi.


Atrof -muhit biotexnologiyasi: ma'nosi, qo'llanilishi va boshqa tafsilotlar

Atrof -muhit biotexnologiyasi - bu atrof -muhit sifatini muhofaza qilish va tiklash jarayonlarini qo'llash.

Atrof -muhit biotexnologiyasi atrof -muhitga ifloslantiruvchi moddalarning chiqishini aniqlash, oldini olish va bartaraf etish uchun turli usullar bilan ishlatilishi mumkin.

Qattiq, suyuq va gazsimon chiqindilarni qayta ishlash orqali, yangi mahsulot ishlab chiqarish yoki tozalash orqali, oxirgi mahsulot atrof -muhitga kamroq zarar etkazishi mumkin. Kimyoviy materiallar va jarayonlarni biologik texnologiyalar bilan almashtirish atrof -muhitga zararni kamaytirishi mumkin.

Shunday qilib, ekologik biotexnologiya barqaror rivojlanishga katta hissa qo'shishi mumkin. Atrof -muhit biotexnologiyasi bugungi kunda eng tez rivojlanayotgan va eng foydali ilmiy sohalardan biridir. Ekspluatatsiya qilinadigan mikroorganizmlarning genetikasi, biokimyosi va fiziologiyasi bo'yicha olib borilayotgan tadqiqotlar tezda er yuzi va#8217 atrof -muhitining yomonlashuvining teskari yo'nalishi va oldini olish uchun sotiladigan texnologiyalarga aylanmoqda.

Atrof -muhit biotexnologiyasining vazifalari (21 -kun tartibiga muvofiq):

Ekologik biotexnologiyaning maqsadi - dasturning asosiy komponenti sifatida xavfsizlik protseduralarini qo'llab -quvvatlab, boshqa texnologiyalar bilan birgalikda biotexnologiyadan to'g'ri foydalanish orqali atrof -muhit degradatsiyasini oldini olish, to'xtatish va qaytarish.

Maxsus maqsadlar:

1. Tabiiy resurslardan optimal foydalanadigan, biomassani qayta ishlash, energiyani tiklash va chiqindilar chiqishini kamaytirish orqali ishlab chiqarish jarayonlarini qabul qilish.

2. Yer va suvni bioremediatsiya qilish, chiqindilarni qayta ishlash, tuproqni saqlash, o'rmonlarni qayta tiklash, o'rmonzorlarni ko'paytirish va reabilitatsiya qilishga alohida e'tibor berib, biotexnologiyaning qo'llanilishini rag'batlantirish.

3. Uzoq muddatli ekologik xavfsizlikni ta'minlash maqsadida atrof-muhit yaxlitligini himoya qilish uchun biotexnologik jarayonlar va ularning mahsulotlarini qo'llash.

Ifloslanish muammolarini davolash uchun biotexnologiyadan foydalanish yangi g'oya emas. Jamiyatlar bir asr davomida kanalizatsiya tozalash uchun tabiiy ravishda paydo bo'lgan mikroblarning murakkab populyatsiyalariga bog'liq edi. Har bir tirik organizm-hayvonlar, o'simliklar, bakteriyalar va boshqalar hayot uchun ozuqa moddalarini oladi va yon mahsulot sifatida chiqindilarni chiqaradi. Turli xil organizmlar har xil turdagi ozuqalarga muhtoj.

Ba'zi bakteriyalar chiqindilarning kimyoviy tarkibiy qismlari bilan ko'payadi. Ba'zi mikroorganizmlar boshqalari uchun zaharli bo'lgan moddalar bilan oziqlanadi. Tadqiqot bilan bog'liq ekologik biotexnologiya, bu tirik shakllar yordamida atrof -muhitga etkazilgan zararni kamaytirish, oldini olish va qaytarishning samarali echimlarini ishlab chiqishda muhim ahamiyatga ega. Aholi salomatligi va atrof -muhit sifatining yomonlashuvi borasidagi xavotirning kuchayishi havoda, suvda va quruqlikda xavfli birikmalarni aniqlash uchun yangi, tezkor analitik asboblar to'plamini yaratishga turtki bo'ldi. Rekombinant DNK texnologiyasi ifloslanishning oldini olish imkoniyatini berdi va bioremediatsiyani yanada rivojlantirishga va'da berdi.

Atrof -muhit biotexnologiyasini qo'llash:

Atrof -muhitni muhofaza qilish barqaror rivojlanishning ajralmas qismi hisoblanadi. Atrof -muhit har kuni inson faoliyati bilan tahdid qilmoqda. Dunyo aholisining kimyoviy moddalar, energiya va qayta tiklanmaydigan resurslardan foydalanishni ko'payishi bilan bog'liq ekologik muammolar ham ortib bormoqda. Chiqindilar to'planishining oldini olish va ularni qayta ishlashga ko'maklashish bo'yicha sa'y-harakatlarning kuchayishiga qaramay, ortiqcha iste'mol qilish natijasida atrof-muhitga etkazilgan zarar miqdori, chiqindilar miqdori va erdan beqaror foydalanish darajasi o'sishda davom etmoqda.

Bu chora -tadbirlarga, ma'lum darajada, xavfli chiqindilarni qayta ishlash va ifloslanishni nazorat qilishda tirik organizmlardan foydalanadigan ekologik biotexnologiyani qo'llash orqali erishish mumkin. Atrof -muhit biotexnologiyasi bioremediatsiya, profilaktika, aniqlash va monitoring, barqaror rivojlanish uchun gen muhandisligi va hayot sifatini yaxshilash kabi keng ko'lamli dasturlarni o'z ichiga oladi.

Bioremediatsiya deganda ifloslantiruvchi moddalarni olib tashlash yoki zararsizlantirish uchun mikroorganizmlardan unumli foydalanish tushuniladi, ular odatda inson salomatligini qo'rqitadigan tuproq, suv yoki cho'kindi ifloslantiruvchi moddalardir. Bio -davolash, bio -melioratsiya va bio -tiklash - bioremediatsiya uchun boshqa terminlar. Bioremediatsiya - bu yangi amaliyot emas. Ko'p yillar davomida mikroorganizmlar maishiy va ishlab chiqarish chiqindilaridan organik moddalar va toksik kimyoviy moddalarni olib tashlash uchun ishlatilgan.

Shu bilan birga, turli xil ifloslanishlarga qarshi kurashda ekologik biotexnologiyaga e'tibor bioremediatsiyaga qaratiladi. Bioremediatsiya dasturlarining aksariyati zaharli chiqindilarni atrof muhitga kiritilishidan oldin aniqlash va filtrlash yoki mavjud ifloslanish muammolarini tozalash uchun tabiiy ravishda paydo bo'lgan mikroorganizmlardan foydalanadi.

Geni o'zgartirilgan mikroorganizmlardan foydalanadigan ba'zi bir ilg'or tizimlar parchalanishi qiyin bo'lgan materiallarni tozalash uchun chiqindilarni qayta ishlash va ifloslanishni nazorat qilishda sinovdan o'tkazilmoqda. Bioremediatsiya joyida yoki maxsus reaktorlarda (ex situ) amalga oshirilishi mumkin. Mikroorganizmlar tomonidan bioremediatsiya qilish uchun ifloslangan joyni tozalash uchun mos muhit kerak.

Ozuqa moddalarini qo'shish, terminal elektron qabul qiluvchilar (O2/YO'Q2), ifloslangan joyda mikroblarning faolligi uchun ma'lum bir organizmning o'sishiga yordam beradigan harorat, namlik talab qilinishi mumkin. Bioremediatsiya operatsiyalari ham joyida, ham joydan tashqarida, in situ yoki ex situ amalga oshirilishi mumkin. Bioremediatsiya turli xil ifloslantiruvchi moddalar, maishiy chiqindilar, radioaktiv chiqindilar va boshqalar bilan ifloslangan suv va tuproqni tozalash uchun katta imkoniyatlarga ega.

Biologik tozalash protseduralari shuni ko'rsatadiki, ko'pchilik organik kimyoviy moddalar tirik organizmlarning fermentativ hujumiga uchraydi. Eng keng tarqalgan yondashuv - bu fermentlarni o'rnini bosuvchi kimyoviy katalizator sifatida ishlatish. Teri, to'qimachilik va tsellyuloza -qog'oz sanoatida kuzatilganidek, qattiq kimyoviy moddalarni sezilarli darajada kamaytirish yoki butunlay yo'q qilish mumkin.

1 tonna pulpani qayta ishlash uchun 10-15 kg xlor o'rniga faqat 1-2 g gemitselluloza almashtiriladi va shu bilan xlorli organik oqova suvlar sezilarli darajada kamayadi. Atrof -muhitni muhofaza qilish va qayta ishlash hozirda biotexnologik, kimyoviy, fizik va muhandislik usullarini birlashtiradi.

Ilmiy bilim va metodlar takomillashgan sari biotexnologiyaning nisbiy ahamiyati ortib bormoqda. Uning energiya va kimyoviy moddalarga bo'lgan past talablari, kichik chiqindilar ishlab chiqarishning kamayishi bilan, an'anaviy kimyoviy va fizik tozalash usullariga tobora kerakli alternativa bo'lib kelmoqda. Atrof -muhitni saqlash uchun bioremediatsiyaning bir nechta ilovalari mavjud. Bu bobda bir nechtasi chiqindi suv va sanoat oqova suvlarini qayta ishlash, tuproq va erni tozalash, havo va chiqindi gazlarni boshqarish kabi masalalarga bag'ishlangan.

Chiqindi suv va sanoat oqova suvlari:

Suvning ifloslanishi dunyoning ko'plab mamlakatlarida jiddiy muammo hisoblanadi. Tez sanoatlashtirish va urbanizatsiya natijasida ko'p miqdorda oqava suvlar paydo bo'ldi, buning natijasida er usti suvlari va er osti suvlari zaxiralari yomonlashdi. Suv havzalarini biologik, organik va noorganik ifloslantiruvchi moddalar ifloslantiradi.

Ko'p hollarda, bu manbalar inson iste'moli uchun, shuningdek, sug'orish va sanoat ehtiyojlari kabi boshqa faoliyat uchun xavfli bo'lib qolgan. Bu shuni ko'rsatadiki, suv sifatining pasayishi, aslida, suv tanqisligiga hissa qo'shishi mumkin, chunki u insoniyat uchun ham, ekotizim uchun ham mavjudligini cheklaydi. Chiqindi suvni utilizatsiyadan oldin tozalash butun dunyoda dolzarb muammo hisoblanadi.

Chiqindilarni tozalash inshootlarida mikroorganizmlar daryolarga yoki dengizga tashlanishidan oldin chiqindi suvdan keng tarqalgan ifloslantiruvchi moddalarni olib tashlash uchun ishlatiladi. Sanoat va qishloq xo'jaligining ifloslanishi ortishi azot va fosfor birikmalari, og'ir metallar va xlorli birikmalar kabi o'ziga xos ifloslantiruvchi moddalarni olib tashlaydigan jarayonlarga katta ehtiyoj tug'dirdi.

Usullar aerob, anaerob va fizik-kimyoviy jarayonlarni o'z ichiga oladi. Kanalizatsiya va boshqa chiqindi suvlar, agar tozalanmagan bo'lsa, o'z-o'zidan tozalanadi, lekin bu jarayon uzoq vaqt davomida ta'sir qilishini talab qiladi. Bu jarayonni tezlashtirish uchun bioremediatsiya choralari qo'llaniladi.

Biroq, oqava suvlarni tozalashda beshta asosiy bosqich tan olingan:

a) Dastlabki ishlov berish, og'ir metallar va suzuvchi chiqindilar.

b) Birlamchi davolanish – to'xtatilgan masalalar olib tashlanadi.

c) Aerob va anaerob mikroorganizmlar faoliyati orqali organik moddalarni ikkilamchi tozalash va bio-oksidlash.

d) Uchinchi darajali tozalash va maxsus ifloslantiruvchi moddalar (ammiak va fosfat) chiqariladi.

e) Sludge treatment – solids are removed (final stage).

Aerobic Biological Treatment:

Trickling filters, rotating biological contactors or contact beds, usually consist of an inert material (rocks/ash/ wood/ metal) on which the microorganisms grow in the form of a complex biofilm. These have been used for more than 70 years for sewage and waste water treatment. In these processes the degradable organic matter is oxidized by the microorganisms to CO2 that can be vented to the atmosphere.

Activated Sludge Process:

This process is used for treatment and removal of dissolved and biodegradable wastes, such as organic chemicals, petroleum refining wastes textile wastes and municipal sewage. The microorganisms in activated sludge generally are composed of 70-90% organic and 10-30% inorganic matters.

The microorganisms found in this sludge are usually bacteria, fungi, protozoa and rotifers. Petroleum hydrocarbons are degraded by species of bacteria (Acinetobacter, Mycobacteria, Pseudomonas etc.), yeasts, Cladosporium and Scolecobasidium. Pesticides (aldrin, dieldrin, parathion, malathion) are detoxified by fungus Xylaria xylestrix. Pseudomonas (a predominant soil microrganism) can detoxify organic compounds like hydrocarbons, phenols, organophosphates, polychlorinated biphenyls and polycyclic aromatics.

Utilisation of immobilized cyanobacterium Phormidium laminosum in batch and continuous flow bioreactors for the removal of nitrate, nitrite and phosphate from water has been reported by Garbisu et al. (2003). Blanco et al. (2003) showed the biosorption of heavy metal by Phormidium laminosum immobilised in micro-porous polymeric matrices. Photo-bioreactors are currently used to grow algae and cyanobacteria under closely controlled environmental conditions, with a view to making high-value products (such as beta-carotene and gamma-linoleic acid), designing efficient effluent treatment processes, and providing new energy sources.

The costs of wastewater treatment can be reduced by the conversion of wastes into useful products. Sulphur metabolizing bacteria can remove heavy metals and sulphur compounds from waste streams of the galvanization industry and reused. Most anaerobic wastewater treatment systems produce useful biogas.

In some cases, the by-products of the pollution-fighting microorganisms are themselves useful. Methane, for example, can be derived from a form of bacteria that degrades sulphur liquor, a waste product of paper manufacturing.

Soil and Land Treatment:

As the human population grows, its demand for food from crops increases, making soil conservation crucial. Deforestation, over-development, and pollution from man-made chemicals are just a few of the consequences of human activity and carelessness. The increasing amounts of fertilizers and other agricultural chemicals applied to soils and industrial and domestic waste-disposal practices, led to the increasing concern of soil pollution. Pollution in soil is caused by persistent toxic compounds, chemicals, salts, radioactive materials, or disease-causing agents, which have adverse effects on plant growth and animal health.

Many species of fungi can be used for soil bioremediation. Lipomyces sp. can degrade herbicide paraquat. Rhodotorula sp. can convert benzaldehyde to benzyl alcohol. Candida sp. degrades formaldehyde in the soil. Aspergillus niger and Chaetomium cupreum are used to degrade tannins (found in tannery effluents) in the soil thereby helping in plant growth.

Phanerochaete chrysosporium has been used in bioremediation of soils polluted with different chemical compounds, usually recalcitrant and regarded as environmental pollutants. Decrease of PCP (Pentachlorophenol) between 88-91% within six weeks was observed in presence of Phanerochaete chrysosporium.

Bioremediation of contaminated soil has been used as a safe, reliable, cost-effective and environment friendly method for degradation of various pollutants. This can be effected in a number of ways, either in situ or by mechanically removing the soil for treatment elsewhere.

In situ treatments include adding nutrient solutions, introducing microorganisms and ventilation. Ex situ treatment involves excavating the soil and treating it above ground, either as compost, in soil banks, or in specialised slurry bioreactors. Bioremediation of land is often cheaper than physical methods and its products are largely harmless.

During biological treatment soil microorganisms convert organic pollutants to CO2, water and biomass. Degradation can take place under aerobic as well as under anaerobic conditions. Soil bioremediation can also be accomplished with the help of bioreactors. Degradation can take place under aerobic as well as under anaerobic conditions. Soil bioremediation can also be accomplished with the help of bioreactors. Liquids, vapours, or solids in a slurry phase are treated in a reactor. Microbes can be of natural origin, cultivated or even genetically engineered.

Research in the field of environmental biotechnology has made it possible to treat soil contaminated with mineral oils. Solid-phase technologies are used for petroleum-contaminated soils that are excavated, placed in a containment system through which water and nutrients percolate. Biological degradation of oils has proved commercially viable both on large and small scales, in situ and ex situ.

In situ soil bioremediation involve the stimulation of indigenous microbial populations (e.g. by adding nutrients or aeration). In this process the environmental conditions for the biological degradation of organic pollutants are optimized as far as possible. Oxygen has to be supplied by artificial aeration or by adding electron acceptors such as nitrates or oxygen releasing compounds. Ozone dissolved in water and H2O2 are sometimes used which degrade the organic contaminants.

With the onset of human civilization, the air is one of the first and most polluted components of the atmosphere. Most air pollution comes from one human activity: burning fossil fuels—natural gas, coal, and oil—to power industrial processes and motor vehicles. When fuels are incompletely burned, various chemicals called volatile organic chemicals (VOCs) also enter the air. Pollutants also come from other sources.

For instance, decomposing garbage in landfills and solid waste disposal sites emits methane gas, and many household products give off VOCs. Expanding industrial activities have added more contaminants in the air.

The concept of biological air treatment at first seemed impossible. With the development of biological waste gas purification technology using bioreactors—which includes bio filters, bio trickling filters, bio scrubbers and membrane bioreactors—this problem is taken care of. The mode of operation of all these reactors is similar.

Air containing volatile compounds is passed through the bioreactors, where the volatile compounds are transferred from the gas phase into the liquid phase. Microbial community (mixture of different bacteria, fungi and protozoa) grow in this liquid phase and remove the compounds acquired from the air.

In the bio filters, the air is passed through a bed packed with organic materials that supplies the necessary nutrients for the growth of the microorganisms. This medium is kept damp by maintaining the humidity of the incoming air. Biological off-gas treatment is generally based on the absorption of the VOC in the waste gases into the aqueous phase followed by direct oxidation by a wide range of voracious bacteria, which include Nocardia sp. and Xanthomonas sp.

Sustainable development and quality living depends upon the rational, eco-friendly use of natural resources with economic growth. To comply with this trend, industrial development has to change to sustainable style from degradative type and for such a purpose cleaner technologies have to be adopted.

According to United Nations Environment Programme (1996) ‘the continuous application of an integrated preventive environmental strategy to processes, products and services to increase eco-efficiency and reduce risks to humans and the environment’ defines the eco-friendly concept. The application of preventive and clean concept can only be achieved by the 5R policies (Olguin et al, 2003).

Five Environmental Buzzwords are the 5Rs for Efficient Use of Energy and Better Control of Waste, Which Might Help in Sustainable Development and Quality Living:

1. Reduce (Reduction of waste)

2. Reuse (Efficient use of water, energy)

3. Recycle (Recycling of wastes)

4. Replace (Replacement of toxic/hazardous raw materials for more environment- friendly inputs)

5. Recover (useful non-toxic fractions from wastes)

Innovation and adoption of clean technologies is the target of research and development worldwide. Industrial companies are developing processes with reduced environmental impact responding to the international call for the development of a sustainable society. There is a pervading trend towards less harmful products and processes away from “end-of-pipe” treatment of waste streams. Environmental biotechnology, with its appropriate technologies, is suitable to contribute to this trend.

Enzymes are widely employed in industries for many years. Enzymes, non-toxic and biodegradable, are biological catalysts that are highly competent and have numerous advantages over non-biological catalysts. The use of enzyme by man, both directly and indirectly, have been for thousands of years.

In the recent years enzymes have played important roles in the production of drugs, fine chemicals, amino acids, antibiotics and steroids. Industrial processes can be made eco-friendly by the use of enzymes. Enzyme application in the textile, leather, food, pulp and paper industries help in significant reduction or complete elimination of severe chemicals and are also more economic in energy and resource consumption.

Biotechnological methods can produce food materials with improved nutritional value, functional characteristics, shelf stability. Plant cells grown in fermenters can produce flavours such as vanilla, reducing the need for extracting the compounds from vanilla beans. Food processing has benefited from biotechnologically produced chymosin which is used in cheese manufacture alpha-amylase, which is used in production of high-fructose corn syrup and dry beer and lactase, which is added to milk to reduce the lactose content for persons with lactose intolerance.

Genetically engineered enzymes are easier to produce than enzymes isolated from original sources and are favoured over chemically synthesized substances because they do not create by-products or off-flavours in foods.

Environmental Detection and Monitoring:

A wide range of biological methods are in use to detect pollution and for the continuous monitoring of pollutants. The techniques of biotechnology have novel methods for diagnosing environmental problems and assessing normal environmental conditions so that human beings can be better- informed of the surroundings. Applications of these methods are cheaper, faster and also portable.

Rather than gathering soil samples and sending them to a laboratory for analysis, scientists can measure the level of contamination on site and know the results immediately. Biological detection methods using biosensors and immunoassays have been developed and are now in the market. Microbes are used in biosensors contamination of metals or pollutants. Saccharomyces cerevisiae (yeast) is used to detect cyanide in river water while Selenastrum capricornatum (green alga) is used for heavy metal detection. Immunoassays use labelled antibodies (complex proteins produced in biological response to specific agents) and enzymes to measure pollutant levels. If a pollutant is present, the antibody attaches itself to it making it detectable either through colour change, fluorescence or radioactivity.

A biosensor is an analytical device that converts a biological response into an physical, chemical or electrical signal. The development of biosensors involves integration of a specific and sensitive biologically derived sensing elements (immobilized cells, enzymes or antibodies) are integrated with physico-chemical transducers (either electrochemical or optical). Immobilised on a substrate, their properties change in response to some environmental effect in a way that is electronically or optically detectable.

It is then possible to make quantitative measurements of pollutants with extreme precision or to very high sensitivities. The biological response of the biosensor is determined by the bio catalytic membrane, which accomplishes the conversion of reactant to product. Immobilised enzymes possess a number of advantageous features which makes them particularly applicable for use in such systems.

They may be re-used, which ensures that the same catalytic activity is present for a series of analyses. Biosensors are powerful tools, which rely on biochemical reactions to detect specific substances, which have brought benefits to a wide range of sectors, including the manufacturing, engineering, chemical, water, food and beverage industries. They are able to detect even small amounts of their particular target chemicals, quickly, easily and accurately.

For this character of biosensors they have been ardently adopted for a variety of process monitoring applications, principally in respect to pollution assessment and control. Biosensors for detection of carbohydrates, organic acids, glucosinolates, aromatic hydrocarbons, pesticides, pathogenic bacteria and others have already been developed.

The biosensors can be designed to be very selective, or sensitive to a broad range of compounds. For example, a wide range of herbicides can be detected in river water using algal-based biosensors the stresses inflicted on the organisms being measured as changes in the optical properties of the plant’s chlorophyll. Biosensors are of different types such as calorimetric biosensors, immunosensors, optical biosensors, BOD biosensors, gas biosensors.

The remarkable ability of microbes to break down chemicals is proving useful, not only in pollution remediation but also in pollutant detection. A group of scientists at Los Alamos National Laboratory work with bacteria that degrade a class of organic chemicals called phenols. When the bacteria ingest phenolic compounds, the phenols attach to a receptor.

The phenol-receptor complex then binds to DNA, activating the genes involved in degrading phenol. The Los Alamos scientists added a reporter gene that, when triggered by a phenol-receptor complex, produces an easily detectable protein, thus indicating the presence of phenolic compounds in the environment. Biosensors employing acetylcholine esterase can be used for the detection of organophosphorus compounds in water.

Biotechnology, which is expected to make a great contribution to the welfare of mankind, is an important technology that should be steadily developed. The application of DNA technology, among the different kinds of biotechnology, has the possibility to create new gene combinations that have not previously existed in nature.

Since its beginning, genetic engineering has claimed to be able to construct tailor-made microorganisms with improved degrading capabilities for toxic substances. With the development of GEM (genetically engineered microorganism) and their possible utilization in the treatment of contaminated soil and water, stability of plasmids is extremely desirable. Plasmids are circular strands of DNA that replicates as separate entities independent of the host chromosome. Plasmids can range in size from those that carry only a couple of genes to ones carrying much greater numbers. Small plasmids may be present as multiple copies. Exchange of genetic information via plasmids is achieved by the process of conjugation.

The use of restriction enzymes has enabled the isolation of particular DNA fragments that can be transferred to another organism lacking the same. Genes which code for metabolism of environmental pollutants such as PCB’s and other xenobiotic compounds are frequently, although not always, located on plasmids.

The possibility of genetic transfer in non-biodegradative microbes has opened a new outlook of bio treatment of wastes. The recombinant DNA has the ability to multiply and may also confer the specific derivative capacity to detoxify environmental contaminants.

Gene transfer among microbial communities has improved the derivative capacity in vitro. The first patent for a genetically modified organism (GMO) or GEM, filed in the USA by Professor A. M. Chakrabarty was for a bacterium Pseudomonas putida with hydrocarbon degrading abilities. Subsequent reports have noted the role of plasmids in degradation of alkanes, naphthalene, toluene, m— and p— xylenes.

Given the overwhelming diversity of species, biomolecules and metabolic pathways on this planet, genetic engineering can, in principle, be a very powerful tool in creating environmentally friendlier alternatives for products and processes that presently pollute the environment or exhaust its non-renewable resources.

Nowadays organisms can be supplemented with additional genetic properties for the biodegradation of specific pollutants if naturally occurring organisms are not able to do that job properly or not quickly enough. By combining different metabolic abilities in the same microorganism blockage in environmental cleanup may be circumvented.

In the USA some genetically modified bacteria have been approved for bioremediation purposes but large scale applications have not yet been reported. In Europe only controlled field tests have been authorized. Just as light, heat, and moisture can degrade many materials, biotechnology relies on naturally occurring, living bacteria to perform a similar function but the action is faster.

Some bacteria naturally feed on chemicals and other wastes, including some hazardous materials. They consume those materials, digest them, and excrete harmless substances in their place. Bioremediation uses natural as well as recombinant microorganisms to break down toxic and hazardous substances already present in the environment. Bio treatment can be used to detoxify waste streams at the source before they contaminate the environment – rather than at the point of disposal. This approach involves carefully selecting organisms, known as biocatalysts, which are enzymes that degrade specific compounds and accelerate the degradation process.

However, the application of GMOs/GEMs, in the environment for bioremediation may create problems in the ecosystem. These exclusively designed organisms do not get a chance to experience the various fluctuating environmental conditions which is faced by naturally occurring organisms during the evolutionary processes spaning millions of years.

As a result, the latter are well adapted to the changing environmental conditions such as changes in temperature, substrate or waste concentrations. But when exposed to the contaminated site, GMOs show a higher viability than naturally occurring bacteria, due to their tailored enzymatic equipment.

There are concerns about the negative effect of these GMOs on the complex and delicate microbial ecosystems by competition or the exchange of genetic material in the soils to which they are applied. Even more worrisome is their potential effect outside the treatment area. While recombinant strains may appear harmless in the laboratory, it is virtually impossible to assess their impact in the field.

Biotechnical methods are now used to produce many proteins for pharmaceutical and other specialized purposes. Human insulin, the first genetically engineered product to be produced commercially (1982) is made by nonvirulent strain of Escherichia coli bacteria, by introduction of a copy of the gene for human insulin.

When the gene is “amplified” the bacterial cells produce large quantities of human insulin that are purified and used to treat diabetes in human beings. A number of other genetically engineered products have been approved since then, including human growth hormone, alpha interferon, recombinant erythropoietin and tissue plasminogen activator.

Biotechnology techniques are being applied to plants to produce plant materials with improved composition, functional characteristics. Among the first commercially available whole food products was the slow-ripening tomato, the gene for polygalacturonase, the enzyme responsible for softening, is turned off in this tomato. Plants that are resistant to disease, pests, environmental conditions, or selected herbicides or pesticides are also being developed.

In 1995, the Environmental Protection Agency (EPA) gave clearance for development of transgenic corn seed, cotton seed, and seed potatoes that contain the genetic material to resist certain insects. The advantage of such products is that they allow the use of less toxic and more environmentally friendly herbicides and pesticides.

The first approved application of biotechnology to animal production was the use of recombinant bovine somatotropin (BST) in dairy cows. Bovine somatotropin, a protein hormone found naturally in cows, is necessary for milk production. When the recombinant BST is administered to dairy cows under ideal management conditions, milk production has been shown to increase by 10% to 25%.

Other uses of biotechnology in animal production include development of vaccines to protect animals from disease, production of several calves from one embryo (cloning), artificial insemination, improvement of growth rate and/or feed efficiency, and rapid disease detection.

Natural bio-pesticides are another development of biotechnology that help farmers reduce chemical use. They degrade rapidly, leave no residues, and are toxic only to target insects. Bacillus thuringiensis (B.t.), produces a protein that is naturally toxic to certain insects. Scientists have extracted the B.t. gene that expresses the insecticide and inserted it into common bacteria that can be grown in large quantities by the same fermentation techniques used to produce such everyday products as beer and antibiotics. Spread on cotton and other crops, these harmless bacteria control insects naturally.

Moreover, a wide range of crop plants have been genetically engineered to express the cry genes (found in B. t.) in their tissues, so the insects get killed as they feed on these crops. Pollution control by genetic engineering is likely to work best when pollutants are a known mixture of relatively concentrated organic compounds that are related to each other in structure, where conventional alternative organic nutrients are absent, and when there is no competition from indigenous microorganisms.

The spectacular metabolic versatility of bacteria and fungi is exploited in the area environmental bioremediation as in sewage and waste water treatment, degradation of xenobiotics and metal abatement. Genetic manipulation offers a way of engineering microorganisms to deal with a pollutant, or a family of closely related pollutants, that may be present in the waste stream from an industrial process.

The simplest approach is to extend the degradative capabilities of existing metabolic pathways within an organism either by introducing additional enzymes from other organisms or by modifying the specificity or catalytic mechanisms of enzymes already present.

A treatment plant at the Homestake Mine in Lead, South Dakota, purifies 4 million gallons of cyanide-containing wastewater a day by completely converting cyanide to nitrate. Pseudomonas sp. convert cyanide and thiocyanate to ammonia and bicarbonate and the nitrifying bacteria Nitrosomonas and Nitrobacter cooperate in converting ammonia to nitrate. Recombinant DNA technology has had amazing repercussion in the last few years in environmental protection and also in other fields for better quality of living.

Different Areas of Environmental Biotechnology:

Environmental Biotechnology and Metagenomics:

Environmental Biotechnology is Divided into Different Areas:

(i) Direct studies of the environment,

(ii) Research with a focus on applications to the environment and

(iii) Research that applies information from the environment to other venues.

Here, a brief account of a particular aspect of direct analysis of environment is given.

In addition to DNA inside living organisms, there is much free DNA in the environment that might also be a source of new genes. The field of environmental biotechnology has revolutionized the study of the life-forms which have not been studied earlier and DNA.

This approach is direct analyses of the environment and the natural biochemical processes that are present. A significant study in this aspect is metagenomics. Metagenomics is the study of the genomes of whole communities of microscopic life forms and it deals with a mixture of DNA from multiple organisms, viruses, viroids, plasmids and free DNA.

In other words, metagenomics, the genomic analysis of a population of microorganisms, is the method to gain access to the physiology and genetics of uncultured organisms.

Using metagenomics, researchers investigate, catalogue the current microbial diversity. New proteins, enzymes and biochemical pathways are identified. The knowledge garnered from metagenomics has the potential to affect the ways we use the environment. Metagenomic analyses involves isolating DNA from an environmental sample, cloning the DNA into a suitable vector, transforming the clones into a host bacterium and screening the resultant transformants.

The clones can be screened for phylogenetic markers such as 16S rRNA and rec A or for other conserved genes by hybridization or multiplex PCR or for expression of specific traits such as enzyme activity or antibiotic production or they can be sequenced randomly.

One very important method for metagenomic study is stable isotope probing (SIP). An environmental sample of water or soil is first mixed with a precursor such as methanol, phenol, carbonate or ammonia that has been labeled with a stable isotope such as 15 N, 13 C or 18 O. If the organisms in the sample metabolize the precursor substrate, the stable isotope is incorporated into their genome.

When the DNA from the sample is isolated and separated by centrifugation, the genomes that incorporated the labeled substrate will be heavier and can be separated from the other DNA in the sample. The heavier DNA will migrate further in a cesium chloride gradient during centrifugation. The DNA can be used directly or cloned into vectors to make a metagenomic library. This technique is useful to find new organisms that can degrade contaminants such as phenol.

Microorganisms are crucial participants in cleaning up a large variety of hazardous substances/chemicals by transforming them into forms that are harmless to people and environment. One very important example is given here. Gasoline is leaked into soil in every gas station in United States.

There is every possibility that gasoline will be mixed with ground water which is the prime source of drinking water. However, the dormant members of the soil microbial community are triggered to become active and degrade the harmful chemicals in gasoline.

Since gasoline is composed of hundreds of chemicals it takes a variety of microbes working together to degrade them all. When some bacteria cause a depletion of O2 in ground water near a gasoline spill, other types of bacteria that can use nitrate for energy begin biodegrading the gasoline. Bacteria that use iron, manganese and sulfate follow.

All these microbial communities work together in a pattern to transform leaking gasoline into CO2 and water. Metagenomic analysis may help us identify the particular community member and function needed to achieve the full chemical transformation that will keep our planet livable.


Videoni tomosha qiling: And Qishloq xojaligi va agrotexnologiyalari Instituti (Dekabr 2021).